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ABSTRACT 

A deterministic model allowing variation at a nuclear genetic locus in a 
population segregating two cytoplasmic types is formulated. Additive, multipli- 
cative and symmetric viability matrices are analyzed for existence and stability 
of equilibria. T h e  protectedness of polymorphisms in both nuclear genes and 
cytoplasmic types is also investigated in the general model. In no  case is a 
complete polymorphism protected with this deterministic model. Results are 
discussed in light of the extensive variation in mtDNA that has recently been 
reported. 

complete understanding of the evolution of cytoplasmic variation requires A not only its description and quantification but also information about the 
phenotypic expression of the variation. The notion that cytoplasmic variation 
may be relevant to adaptive evolution is supported by evidence from the plant 
kingdom, in which cytoplasmic male sterility (EDWARDSON 1970) and leaf var- 
iegation (KIRK and TILNEY-BASSETT 1967) are well documented. Even in the 
absence of obvious morphological effects, the nature of mtDNA sequence var- 
iation suggests that cytoplasmic variation can confer differences in phenotypic 
fitness. 

Stable transmission of traits through the cytoplasm is important to their 
evolutionary dynamics. In many cases, the mode of transmission can be as- 
cribed to particular cytoplasmic organelles. Petite mutants of yeast are known 
to be due to defective mitochondria, lacking cytochromes a + a3 and b 
(EPHRUSSI 1953). Poky mutants of Neurospora are also clearly mitochondrial 
mutants (MITCHELL and MITCHELL 1952; LAMBOWITZ, CHUA and LUCK 1976). 
A number of drugs, including chloramphenicol (CAP) and erythromycin, spe- 
cifically inhibit protein synthesis in mitochondria by affecting mitochondrial 
ribosomes but do not inhibit cytoplasmic protein synthesis. Yeast mutants re- 
sistant to these drugs often show non-Mendelian inheritance (LINNANE et al. 
1968), and proof that these are mtDNA mutants was most convincingly dem- 
onstrated by mapping the genes that confer resistance to different drugs on 
the mitochondrial genome (MOLLOY, LINNANE and LUKINS 1975). Drug-resist- 
ant mitochondrial mutants have also been isolated in Aspergillus (ROWLANDS 
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and TURNER 1975), Podospora (BELCOUR and BEGEL 1977) and Paramecium 
(BEALE, KNOWLES and TAIT 1972). In human HeLa cells, CAP resistance was 
shown to be determined by the cytoplasm by fusing enucleated CAP-resistant 
cells with nuclei of CAP-sensitive cells and observing that these “cybrids” were 
CAP resistant (SPOLSKY and EISENSTADT 1972). Subsequently, WALLACE (198 1) 
proved that these were mitochondrial mutants, with sequences differing in the 
large rRNA gene (WALLACE et al. 1982). 

The polymorphic nature of mitochondria had been shown in a number of 
organisms by agarose gel electrophoresis of restriction endonuclease-digested 
mtDNA. These include Drosophila (SHAH and LANGLEY 1979; POWELL 1983), 
sheep and goats (UPHOLT and DAWID 1977), Peromyscus (AVISE, LANSMAN 
and SHADE 1979), Mus (FERRIS et al. 1983a,b; LANSMAN et al. 1981), pocket 
gopher (AVISE et al. 1979), rat (BROWN and SIMPSON 1982), humans (BROWN 
1980; AQUADRO and GREENBERG 1983; BLANC et al. 1983; GREENBERG, NEW- 
BOLD and SUGINO 1983; DENARO et al. 198 1 ; CA”, BROWN and WILSON 1982; 
CANN and WILSON 1983) and other primates (FERRIS, WILSON and BROWN 
1981; BROWN et al. 1982). Although these data do not suggest any adaptive 
role for mitochondrial variation, they have been useful in elucidating mtDNA 
transmission and in constructing evolutionary phylogenies. Introgression of 
mtDNA has been inferred in both Drosophila (POWELL 1983) and mice (FERRIS 
et al. 1983), demonstrating that mitochondria can have unexpected evolution- 
ary dynamics. The data suggest strict maternal inheritance of mitochondria in 
higher eukaryotes, even after many generations of substitution backcrossing 
(LANSMAN, AVISE and HUETTEL 1983). 

Mitochondrial DNA sequence analysis in man, mouse and rat (MIYATA et al. 
1982; BROWN, GEORGE and WILSON 1979; and AVISE et al. 1979) demonstrates 
that silent substitutions (those not changing amino acid sequence in translated 
genes) occur at six to ten times the rate of silent substitutions in nuclear genes. 
On the other hand, the rates of substitutions causing amino acid sequence 
changes are similar in mitochondrial and nuclear genes (BROWN et al. 1979). 
HAUSWIRTH and LAIPIS (1 982) directly observed divergence among 15 Hol- 
stein cows within a single maternal lineage spanning 13 generations. The bulk 
of the variation in Drosophila mtDNA sequence occurs in the A-T rich region 
and is apparently not transcribed (WALSTENHOLME, FAURAN and GODDARD 
1980). Sequence variation in the human D-loop region indicates a number of 
significant biases (AQUADRO and GREENBERG 1983). The crucial point is that 
mtDNA sequence variation is not completely random, and the nature of the 
nonrandomness may suggest evolutionary constraints. Despite this, the degree 
to which phenotypic variation in a natural population of higher eukaryotes is 
mediated by variation in mitochondria is not known. 

It is clear at the biochemical level that nuclear and mitochondrial genes 
must retain tight integration in their expression. The mitochondrial proteins 
ATPase, cytochrome oxidase and cytochrome b have subunits encoded by both 
nuclear and mitochondrial genes (BEALE and KNOWLES 1978). Nuclear-cyto- 
plasmic interactions are also manifest at the phenotypic level, and systems of 
cytoplasmic male sterility are particularly well studied. 
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In this paper a population genetic model allowing nuclear-cytoplasmic inter- 
action in viability is studied with the intention of understanding the nature of 
cytoplasmic variation. 

THEORY 

Consider an infinite randomly mating population segregating at one nuclear 
genetic locus with two alleles, A and a. Let there be two cytoplasmic types, m 
and n, and let them be strictly maternally inherited. The frequencies of the 
six cytogenotypes can be written: 

Cytoplasm 

Genotype m n 

AA XI 1 XI2  

Aa XPl XPP 

XSZ aa xs I 

so that xy is the frequency of the ith genotype in the j t h  cytoplasm, and ZiCj 
xy = 1. Define: 

p m  = ~ 1 1  + ' /2~21 

P n  = x12 + %x22 

4.1 = ~ 3 1  + ?hxpl 

q n  = x32 + ? h 2 2  

where p is the frequency of A,  q is the frequency of a and m and n are the 
frequencies of the respective cytoplasmic types. Consider the case with no 
selection. Adults mate randomly with respect to cytogenotype, so the proba- 
bility of each mating type is the product of the frequencies of the cytogeno- 
types involved. The expected fraction of progeny occurring in the six cyto- 
genotypic classes is easily gotten from Mendelian segregation and maternal 
transmission of cytoplasm. From a table of mating types and resultant progeny, 
we get the recurrence relations: 

x;1 = x:1 + %XIIX21 + Xl lX12  + Y2x11x22 + %x21x11 + %x& + Yzx21x12 

+ %x21x** 

xi1 = 1/2xIIxql + Xl lxgl  + %x21xII + 1/2xg1 + %x21x3I + xglxll + I/2xQlx21 

+ 1/2x11%22 + x l l X Q 2  + L/2x21x12 + 1/2X21x22 + '/2X2lX32 + %!31x12 

+ 1/2xg1x*2 

xi1 = %x%1 + %x21x22 + Vzx21xg1 + 1/zx21xg2 + I/2xg1x21 + Yixg1x22 

+ x3lx32 + x$l 
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p’ = xi1 + xi2 + ?hx;1 + %x& = p (4) 

So the frequencies of the alleles of the nuclear locus do not change in the 
absence of selection. Now consider what happens to cytoplasmic frequencies: 

m’ = xi1 + xi1 + xi1 = m ( 5 )  

So cytoplasmic frequencies do not change either. 
The recurrence system given in equation 2 is suitable for extensions of the 

model in which cytogenotypes are acted upon by selection is such a way that 
cannot be reduced in dimension. In other cases, a more compact formulation 
is desirable. By analogy, in two-locus theory the recurrences can be expressed 
in terms of ten genotypic frequencies or four gametic frequencies or two allelic 
frequencies and a coefficient of linkage disequilibrium. 

Define the egg frequencies as follows: 

Cytoplasm 

Allele m n 
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where el + e2 + e3 + e4 = 1 .  Barring sex-specific viability differences or 
segregation distortion, sperm frequencies will be the same as respective egg 
frequencies. The recurrence equations can be written: 

e i  = e: + e112 + ele3 + Y2ege2 + %e1e4 

e6 = e f  + e2e1 + Y262e3 + e2e4 + 
e; = e; + e1e3 + 1/2e2e3 + e3e4 + 1/2e1e4 

e; = eS + s e l e 4  + 6264 + e3e4 + Y2e2e3 

(6) 

Defining an association parameter A = e1e4 - 6263 this can be written, 

ei = el - %A 

e6 = e2 + %A 

e; = es + Y2A 

e; = e4 - Y2A. 

(7) 

Now the parallel to two-locus theory is readily apparent, where the association 
parameter A is identical in formula to the linkage disequilibrium parameter D, 
and there is free recombination (r = 0.5 in the two-locus model). From this 
parallel it is clear that allelic and cytoplasmic frequencies do not change, and 
egg frequencies change such that the magnitude of the association parameter, 
A, halves each generation. 

At equilibrium we have A = 0 and, 

i l  = pm i 2  = pn i3 = qm i4 = qn. (8) 
The equilibrium cytogenotypic frequencies are the products of respective allelic 
and cytoplasmic frequencies, analogous to ROBBINS’ (1 9 18) proportions: 

i l l  = p2m i 1 2  = p2n 

$21 = 2pqm i 2 2  = 2pqn (9) 
2 i s 1  = q2m ~ 3 2  = q n. 

The general viability model allows each of the six cytogenotypes to have a 
different viabilities: 

Cytoplasmic type 

Genotype m n 

AA V I  v4 

Aa VP v5 

aa vs U6 

This can be put into the format of the usual viability matrix W with elements 
wo(i, j = 1, 2,  3, 4) as follows: 
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Sperm (pollen) 

Am An om on Egg 

A m  VI VI VP vz 
An V I  v4 U5 v5 

am v2 v2 U 3  v3 

an v5 v5 U6 v6 

The marginal fitness of the egg type z is: 

wi = e,w0 
j 

and the marginal fitness of the j t h  type sperm is: 

w, = 2 eiwv 
i 

Notice that the model departs from two-locus theory in that W is not sym- 
metric, and the marginal fitnesses of the male and female gametes are differ- 
ent. Define the mean fitness w as the sum of the products of gametic frequen- 
cies weighted by the corresponding fitness: 

w = 1 eiejwy (1 2) 
i J  

The derivation of the recurrence equations in egg frequency will be given in 
some detail, because the resulting lack of influence of sperm/pollen frequency 
is somewhat nonintuitive. 

Gei = wile: + w12ele2 + 1/2w13ele3 + 1/2w14ele4 + '/2wslesel + 1/2w32e3e2 

= elwl - 1/2(w14ele4 - w32e3e2) 

= elwl  - 1/2w14A. 

Similarly, (13) 
$e; = e2w2 + I/2W41A 

Gei = e3wg + Y2w19 

we; = e4w4 - Gw41A. 

This can be somewhat more succinctly written as: 

(14) Gel = e;wi + tiA 

ti = -1/2W14, 1/2W41, Yiw14, -1/2W41 for i = 1, 2, 3, 4. 

When w14 = W4lr  the heterozygote viabilities are the same in the two cyto- 
plasms, and the recurrence equations are identical with the two-locus model 
with r = '/2 (with restrictions on the viability matrix). 

A convenient way to express these equations is to use the allelic frequencies: 
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p = el + e2 and q = e3 + e4 

Wei = el(@, + qv2) - %v2A 

We4 = e2(pu4 + qvs) + % v d  

we; = e3(@2 + qvs) + 1/2v2A 

We; = e(@, + qvs) - % v d  

Additive viability model 
Let the viabilities be: 

685 

(15) 

Genotype m n 

so that genotypic and cytoplasmic fitness effects are additive. Without loss of 
generality, let PI = 0. From (15) we obtain: 

we;  = e l ( p a l  + qa2) - 1/2a2A 

we4 = e2(pa1 + qa2 + P 2 )  + 1/2(a2 + P2)A 

GeS = es(pa2 + qa3) + 1/2a2A 

We; = ed(pa2 + qas + 8 2 )  - %(a2 + &)A 

It is immediately clear that there is no internal equilibrium with A = 0, since 
this would require w1 = w2 = w3 = w4- In particular w1 = pal + qa2 and w2 = 
pal + qa2 + P 2 ,  so if w1 = w2 then 8 2  must be zero, implying neutrality of 
cytoplasmic types. 

(16) 

Observe that the mean fitness is independent of A:  

W = el(pa1 + 4 4  + en(pa1 + qa2 + P 2 )  + es(pa2 + 4 4  

(17) + e4(pa2 + qa3 + P 2 )  

= p ( p w  + qa2) + q(pa2 + 4"s) + 7882 

= p2(a1 - 2a2 + a3) + 2p(a2 - a3) + a3 + 78/32 

To determine the change in mean fitness, substitute (14) into (12) to obtain: 

w&wi + ciA)(ejwj + q A )  (18) 

Note that w, here refers to the marginal egg fitness, so wi = wj if i = j .  
Expanding this expression we get, 

5' = 5 - 2  

i j  

w'= w --2 2 wqeiwiejw, + 25-2 E 2 wqeiwiejA + rsI-2 wVeic,A2. (19) 
i j  i j  i j  
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FIGURE 1.-The relationship between 6' and A is plotted with a solid line using the additive 
viability matrix when a1 = 1 ,  a2 = 0.5, as = 0.2, 01 = 0 and 0 2  = 0.5 and f l  = m = 0.5. The 
dashed line represents the four-allele case and is referred to as i : h i a ~  in the text. i in this case is 
0.8 for all values of A.  

Observe that the first term is the same as the mean fitness in the subsequent 
generation in the classical four-allele viability model. Denoting this term by 
WSlassical, a considerable amount of algebra yields: 

G' = Wc)lassical + A P ~ W - ~ { $ ~ ( C ~ :  - 2 a l a z  + 2Cl'2(Yg af) 

+ p ( 2 d  - 3anas + (Yi(Yz) + (Yz(Y3 - + Pz[pn(cYi - az) + qn(a2 - as) 

- A(CYI - 2 ~ ~ 2  + L Y Q ) ] ]  + 1 / A 2 P & 3 - 2 ( ~ l  - 2az + ( ~ 3 ) .  

(20)  

When A = 0 the mean fitness will not decrease for at least one generation 
because W ' = W:lasical, and as KINGMAN (1 96 1) showed, ZEl:lasical is nondecreasing. 
This is true for the general nuclear-cytoplasmic viability model and is analo- 
gous to the two-locus viability model where D = 0. 

W '  can be examined by considering the effect of varying A when allelic and 
cytoplasmic frequencies are held constant. Equation (20) is then a quadratic 
function relating A and W '  (Figure 1). 

Either of the two rightmost terms of (20) can be either positive or negative, 
so it is possible to have 5' < W:lassical. In particular, the function depicted in 
Figure 1 is defined for Amin < A < A,,, where 
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Amin = -min(pm, qn), and 

A,,, = min(pn, qm). 

If W ’  I A  Amin d Wfbssical then W‘ d Wfbssical for Ami,, < A < 0 and W‘ 2 W:lassical 

for 0 < A < A,,,, and conversely. W ’  is minimized at either Amin, A = 0 or 
A,,,, depending on the viability matrix. If, for all p and m, W ’  is minimized at 
Amin, then by showing 

( 2 2 )  
- - I  w I A  = Amin 2 6 

we will demonstrate that W ’  is nondecreasing. First observe that the equation 
(20) graphed in Figure 1 is nearly linear, so that W’ = W:lassical - A . S .  Collecting 
terms in A and solving the derivative, 

- Cl:) + p(2Ck’: - ~ c X ~ ( Y Q  + (Yi(Y2) -k (Y~(YQ - a; ( 2 3 )  
+ P[pn(a, - w) + n(a2 - as)]) 

so S can be approximated by the second term. By substituting Amin = pm we 
obtain, 

W ’  - A,i,S > W; 
so provided that the linear approximation of (20) is adequate, this demonstrates 
that W is nondecreasing in the additive model. Numerical simulations have 
shown the approximation W’ W:lassical - A S S  t? be very good, and direct 
simulations (see following data) fail to find a case in which W decreases. 

Accepting that W is a Lyapunov function, equilibrium properties of the re- 
currence system can be determined directly. Equilibrium allelic frequencies are 
obtained from 

(24) 

arij _ -  - 2P(a1 - 2a2 + a3) + 2(ap - a3) = 0, so 
aP 

ff3 - a 2  

= a1 - 2a2 + a3 
A necessary and sufficient condition for a globally stable nuclear polymorphism 
is a2 > a1, a3. If a1 < ap < as, then allele a will fix, whereas if a1 > a2 > a3, 

allele A will fix. If ap < al, as, then either allele a or allele A will fix depending 
on initial conditions. The fate of the cytoplasmic variation can also be obtained 
from W: 

a?% 
- = P 2  an 

If P2 > 0, then cytoplasm n increases in frequency until all individuals possess 
this cytoplasm, whereas if P 2  < 0, the m cytoplasm increases to fixation. The 
additive model cannot maintain a cytoplasmic polymorphism. 
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The 5 surface has interesting geometric properties. Equation (26) implies 
that, even though W is a quadratic surface, it is composed of straight lines 
parallel to the m axis (Figure 2). This is also true in the general viability model. 
A consequence of this is that it is topologically impossible to have a closed loop 
in a contour map of the surface, and hence there is never an internal local 
maximum in w. 

Multiplicative viability model 
Let the viabilities be 

Genotype m n 

The recurrence equations in this case are, 

we; = el(paIP1 + qa2S1) - '/2a281A 

we6 = e 2 ( p a 1 P 2  + 4 4 4 )  + %a282A 

we6 = es(pa2P1 + q'y3@1) + V ~ ~ ~ P I A  

we; = e4pa282 + qaSP2) - '/2a282A 

where ri, = (e& + e2/32)(pa1 + qa2) + (e& + e&)(pa2 + qas). This model 
contrasts sharply with the behavior of the two-locus multiplicative viability 
model. By analysis similar to the additive case, it can be shown that W is 
nondecreasing, unlike the two-locus model. A consequence of w being a Lya- 
punov function is that a cytoplasmic polymorphism cannot be maintained, and 
the nuclear polymorphism then behaves as in the classical one-locus model. 

The multiplicative nuclear-cytoplasmic and two-locus models are similar in 
the domains of the association parameter and D .  Observe that 

(27) 

A' =e ;e ;  - e i e ;  

- e2e3( p a d 2  + qa2B2)(pa2B1+ qasB1) 
G2 

I f  A = 0, then A' = 0. Furthermore, if A < 0 for some starting condition, 
then A will remain less than zero. As KARLIN (1975) states, R+ and R- are 
invariant domains of D in the two-locus viability model. Here, R+ and R- are 
invariant domains of A .  

Symmetric viability model 

matrix: 
One type of symmetric model can be specified by the following viability 
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FIGURE 2.-Two perspective plots in the W surface for the viability matrix where V ,  = 0.3, 1.3, 
0.4, 0.9, 0.2 and 0.8 for i = 1 to 6. Axes are of unit length. 
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Genotype m n 

Without loss of generality, let uz = 1 so only two parameters determine the 
model. 
The recurrence equations become 

If Â  = 0, then the marginal fitnesses are equal and we immediately obtain the 
condition u1 = us. Therefore, if u1 # us, then an interior equilibrium must 
have A # 0. 

The symmetry of the model suggests equilibria of the form f i  = h = 0.5; 
therefore, substituting into (30) we get, 

. . A  4 Therefore, symmetric e uilibria (if they exist) are of the form il = e4, e2 = e3. 
At these equilibria Â  = e l  - e*$, and the recurrence equations become, -1 

(32) We^, = 0.5(~1 + l)el - %(e*: - Q 
W& = 0.5(1 + ~ 3 ) &  + %(e*:! - 

Therefore, rir = (U] + I)& + (US + I)&. Substituting 22 = % - il we get zi, = 
i l (ul  - U S )  + %(ug + 1). When this is substituted into (32), then il can be solved 
directly. 

(33) 
0.5(Ul + 1)& - Yip: - (Y2 - i1y3 

&(U1 - u3) + %(U3 + 1) 
el = 

Some algebra yields, 

a n d A = & - I / .  
The (+) root is valid for all non-negative values of V I  and u3 (provided 
u1 # 4, whereas the (-) root is never valid; therefore, a unique symmetric 
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equilibrium always exists. The  marginal fitness pattern in one cytoplasm can 
be overdominant, underdominant or directional, and this result still holds. If 
vi = us, then the model is degenerate because there is no cytoplasmic effect on 
viability. 

The stability of the symmetric equilibrium is analyzed by evaluating the 
eigenvalues of the linearized transformation evaluated at the equilibrium point. 
The linearized system is, 

Wei = Vzel(vI + 1)  

we4 = %e2(vS + 1)  

Eigenvalues are obtained from 

%(VI + 1) - XG 0 
= o  

0 1/2(vs + 1) - XG 

where 2 = &(VI - v3) + %(v3 + 1 )  = i2@3 - VI) + %(VI + 1). The roots are 

(35) 

If X < 1, then 

Yz(v1 + 1) e &(VI - v3) + %(vs + 1)  * i ,  > !h (38) 
and 

l/g(Vg + 1)  < iS(V3- v1) + I/g(t)l + 1)  * > 
Since neither e*l nor e^, can exceed ‘/2 in the symmetric case, the contradiction 
implies that X > 1. Hence, the symmetric equilibrium is never stable. The same 
result is obtained when the system is treated as one dimensional. A numerical 
simulation of the symmetric case is presented in Figure 3. 

Rather than pursue the uniqueness of the symmetric equilibrium, the possibility 
b f  maintaining a complete polymorphism (A, a, m and n all segregating). will be 
investigated is5 the general viability model. 

General viability model 
First consider the conditions for the stability of the corner equilibrium 

il  = 1 .  [The terms “corner” and “edge” refer to the tetrahedral simplex repre- 
sentation of gametic frequencies as in the two-locus model (KARLIN and FELDMAN 
1970)l. A small perturbation from this point can be represented as, 

e l = l - d  

d = e:! + e3 + c4, 

where d is arbitrarily small. If e4 = 0 initially, then e; = ( % ~ ~ ~ c p e ~ ) / t i )  is obtained 
from (1 3). Equation (1 3d) can be written as, 

*(e; - e4) = 4 w 4  - Yzw41e1 - ti)) + Yzw4le2es. (39) 
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n 1 
FIGURE 3.-Phase plot showing 10 generation iterations from each of 100 starting points, using 

the symmetric viability matrix where U, = 1, up = 1.2 and us = 1 . 1 .  Stars indicate stable edge 
equilibria, and the center is an unstable equilibrium. 

A sufficient condition for e4 to increase is, therefore, 

w 4  - 1 / ~ w ~ ~ e l  - W > 0, (40) 
which is equivalent to L/2 < (w4 - W)/w41.  When e4 is close to unity, we have 

wi = wil + O(e,), 

and W = w I 1  + O(ei). Equation (40) is equivalent to ?4 4 (w41 - W ~ I ) / W I I .  In the Vi 

notation, a sufficient condition for e4 to increase (hence for the el = 1 corner to 
be unstable) is V I  < !hug. 

Assuming that e4 is of the order e2e5, and ignoring quadratic terms in e2, e3 and 
d,  we obtain, 

e; = e2w2/zij = e2w21/wl l  = e2v4/v1 

e5 = e3w3/G = e 3 w 3 1 / w l l  = e3u2/v1. 
(41) 

These equations indicate that the e l  = 1 equilibrium is unstable if V I  < v 4  or V I  

< up.  This result is rather similar to the two-locus situation with free recombi- 
nation, and the analysis follows that of BODMER and FELSENSTEIN (1967). In 
summary, any of the three conditions V I  < up, V I  < v4 or v1 < %vg is sufficient to 
guarantee instability of the equilibrium 21 = 1. 
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Next consider the conditions for the increase of a novel cytoplasm in a 
homoplasmic population with a balanced nuclear polymorphism. Let el = e3 = 0 ,  
e2 = f i  = (v5 - v6) / (2v5  - v4 - v6) and e4 = 1 - e2. The m cytoplasm is introduced 
into this population by letting e2 = p - d2, e4 = q - d4 and el + 
e3 = d2 + d4 .  Assuming e l ,  e3, d2 and d4 are small enough to ignore quadratic 
terms, we get 

w = p2v4 + 2pqu5 + q2v6 

wT = ejwV = pul + qv2 
j 

w t  = ejw3, = pu2 + qv3. 
j 

wrand w:represent the marginal fitnesses of the gametes Am and am introduced 
near the edge equilibrium. Substituting into the recurrence equations (1 3) and 
ignoring quadratic terms in e l ,  e3, d:! and d4 we obtain, 

we5 = e3wr + % v ~ e l ( q  - d4) - V'iu2(p - d2)e3 = e3(w: - %v*p) + !hv2qel. 

We also get equations for d ;  and d i  and note that they are independent of el  
and e3, whereas equation (43) is independent of d2 and d4 .  The eigenvalues of 
the full system can be obtained from each pair of equations separately, since the 
fourth order characteristic equation can be factored into two quadratic terms. 
The equations in d2 and d4  simply indicate that v5 > v4, U 6  is a condition for 
stability of the edge equilibrium. Equations (43) yield the characteristic equation, 

w :  - V2v2q - xw %v2p 

w ;  - V'iv2p - xw 
/ = o  

Y2v2q 

which is equivalent to, 

w2X2 - XG[wT + w: - Y2v2] + wrw:- VZV2(PW::+ qw:) = 0 

(WX - w *)[WX - (w * - %up)] = 0 

(44) 

Letting w T =  w: = U*, this factors into 

(45) 
so the roots are X = w*/W and (w* - %vp)/G. Invasion of the nova1 cytoplasm 
can occur if w * > W, implying that the marginal fitnesses of the rare gametes are 
greater than the mean fitness of the population at the edge equilibrium. 

The characteristic equation (44) can be written X2 + XX + Y = 0, where 

U:: + w: - V2Vq 

wrw: - V'iU2(PWT + qw:) 

X =  w 

Y =  w2 
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As BODMER and FELSENSTEIN (1967) indicate, the condition X > 1 is equivalent 
to either X > 2, or, if X < 2, then Y > X - 1. These conditions reveal that when 
w T > w and w s* > w invasion occurs, whereas when w f < w and w s* < w invasion 
cannot occur. When w f < w < w ;  or w s* < w < w T, the edge equilibrium is either 
stable or unstable, depending on the earlier described conditions on X and Y. 

Armed with the stability conditions for all possible equilibria that are not 
complete polymorphisms, we can now examine the conditions for the protection 
of nuclear and cytoplasmic polymorphisms. By explicitly examining all possible 
patterns of viability matrices, it is shown that the conditions for in- 
stability of an edge or corner guarantee the stability of another edge or corner. 
A detailed case analysis is presented in the APPENDIX. begenerate viability 
matrices can be found that do not satisfy the strict inequalities for the corner 
and edge equilibria (e.g., vi = 0,2,0, 1, 1, 1 for i = 1 to 6). The analysis presented 
here does not allow prediction of stability in these cases, but numerical simulation 
shows that both cytoplasms can be maintained. However, these matrices are 
degenerate in the sense that any small change in viabilities results in instability 
of interior equilibria. It can be concluded that the general viability model cannot 
protect a complete polymorphism. 

Numerical studies 
A variety of numerical simulations further corroborated the analytical results. 

In the case of additive viabilities, 1000 matrices fitting this pattern were chosen 
at random, and ten random starting points were selected for each by choosing 
el,  e2, e3 and e4 from a uniform distribution on [0, 13. w and W’ were calculated 
and, as expected, 13’ > 13 in all 10,000 cases. In a similar fashion, w failed to 
decrease when the viability pattern was multiplicative. A and A ’  were also 
calculated and, in the multiplicative case, the association parameters never 
changed sign (even when allowed to iterate to equilibrium). In the case of 
symmetric viabilities, the location and instability of the center equilibrium were 
verified numerically, and w and A did not have monotone trajectories. In both 
the symmetric and general cases, the mean fitness could decrease. 

The conditions for invasion of a novel cytoplasm from an edge or corner were 
verified in the general viability model by comparing the eigenvalues with actual 
iterations with 5000 random matrices. Following this, the edge and corner 
stability was tested for 100,000 randomly chosen matrices (all six viabilities 
chosen from U[O, 13, and results appear in Table 1. Note that the two edges can 
be simultaneously stable and that in all cases at least one edge or corner is stable. 

Proving that protection cannot be guaranteed does not preclude the possibility 
of a stable interior equilibrium, but this was addressed numerically. Ten thousand 
random matrices were generated as described earlier, and one random initial 
gametic frequency vector was generated for each. The recurrence equations 
were iterated until a gamete had a frequency less than lo-’‘. By this criterion, 
in all 10,000 cases the model failed to maintain a complete polymorphism. 

DISCUSSION 

The general viability model allowing Mendelian transmission of nuclear genes 
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TABLE 1 

Numerical results 

695 

One corner stable 20,516 

One corner and opposite edge stable 16,074 
Diagonally opposite corners stable 2 1,697 
Two corners in the same cytoplasm stable 22,590 
Two edges stable 1,241 
One edge and two opposite corners stable 2,008 

One edge stable 15,874 

Total 100,000 

Conditions for stability of edge and corner equilibria were tested in 100,000 ran- 
domly generated general viability matrices. 

and strict maternal transmission of cytoplasmic factors cannot maintain a poly- 
morphism in both nuclear genes and cytoplasms. The observation of extensive 
variation in both nuclear and mitochondrial DNA forces consideration of means 
other than viability selection that can maintain polymorphism. Genetic drift can 
occur in subcellular organelles both within and among individuals. The theory 
of neutral organelle genes is being developed (BIRKY, M ~ R U Y A M A  and FUERST 
1983; TAKAHATA and MARUYAMA 1981; CHAPMAN et al. 1982), and results 
indicate that the relative importance of genetic drift to nuclear and organelle 
genes depends on paternal contribution, the number of organelles per cell, 
mutation rates and sex ratio. It is not the case that genetic drift can always 
maintain more genetic diversity in organelles than in nuclear genes. The obser- 
vation of gene sequence conservation despite the elevated mutation rate of 
mtDNA suggests selective constraints, but this does not address the issue of the 
importance of drift in maintaining mtDNA sequence diversity (not all sites are 
constrained). 

Even in the absence of genetic drift, deterministic selection models may be 
able to maintain nuclear and cytoplasmic polymorphism. Components of selection 
including gametic viability, fecundity and sexual selection may be important. 
Observations of cytoplasmic dale  sterility in crop plants as well as natural 
polymorphisms for cytoplasmic sterility factors (MICHAELIS 1954) are well docu- 
mented. Theoretical results of GRECORIUS and Ross (1984) show that sexual 
asymmetry in fertility can protect a nuclear and cytoplasmic polymorphism. 
Multiple alleles and multiple loci may be relevant to the question, and mitochon- 
drial recombination cannot be excluded. Allowing even a small component of 
paternal transmission of cytoplasmic factors would greatly change the results of 
these models. Introgression of mtDNA has already been documented in two 
independent cases (POWELL 1983 and FERRIS et al. (1983), representing an 
unexpected source of diversity. In summary, our knowledge of the degree and 
causes of mtDNA sequence diversity is far from complete, but the necessary 
theoretical and experimental tools are now at our  disposal. 

This work was suppported by National Institutes of Health grant HD 18379-01. 
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APPENDIX 

It is shown that it is not possible to have all corners and edges simultaneously unstable by using 
the general conditions for stability of the corner and edge equilibria. When taken together, these 
cases prove that the general viability model cannot protect a complete polymorphism. 

Case la: Directional selection in both cytoplasms (VI  > vz > us and u4 > v5 > u6). The two corner 
equilibria il = 1 and is = 1 cannot both be unstable, because if v1 > u4, then i t  = 1 is stable and, if 
v1> V I ,  then is = 1 is stable. 

Case Ib: Opposing directional selection in both cytoplasms (ul > up > 713 and u4 < vs < v6). Assume 
that = 1 is unstable, so that either VI < u4 or V I  < %us. In either of these cases, the conditions for 
stability of i, = 1 are met (i.e., U6 > u5, v6 > us and U6 > Yzuz). 

Case 2a:  Directional selection in one cytoplasm and overdominance in the other. Let i l  = 1 be 
unstable because V I  < u4. The viability matrix can be written, 

~~ ~ 

Cytoplasm 

Genotype m n 

AA l + a + b  l + a + b + c  
Aa 1 + a  l + a + b + c + d  
aa 1 l + a + b + c + d - e  

where a, b, c ,  d ,  e > 0,  and all viabilities are non-negative. Let il = 1 be unstable because U, < u4. 
The equilibrium on the An-an edge has fi = e2 = e/(d + e )  and rir = 1 + a + b + c + 2pqd - q*e. The 
marginal fitnesses of Am and am are wf = 1 + a + pb and w:= 1 + pq. If w > w:  we have, 

l + a + b + c + 2  ( - d + e  ) (  - d + e  ) d - ( L ) 4 e s l + a + p ( z )  d + e  d + e  ' 

which is equivalent to 

> 0 .  ( 4 7 )  
d e ,  

+ C + -  
bd - 

d + e  (d + e )  

This is clearly valid since all terms are positive. Since w f > w:, this implies that rir > w: as well, and 
the stability of the An-an edge is guaranteed. 

Case 26: As in case 2a, let the pattern of viabilities be directional in one cytoplasm and overdominant 
in the other. Now assume that i l  = 1 is unstable because VI %us. The viability matrix can be written 
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Cytoplasm 

Genotype m n 

AA l + a + b  2(1 + a + b ) + c - d  
Aa 1 + a  2(1 + a + b) + c 
aa 1 2(1 + a + b ) + c - e  

where a ,  b, c, d ,  e > 0, and all viabilities are non-negative. 6, w:and w:are the same as they were in 
case 2a, but now 9 = 2(1 + a + b )  + c - p*d - 4%. To see whether i > w:, choose d and e to 
minimize i for given a, b and c. This yields 

(48) 
I&, ,~  = 2i4*(1 + a + b )  + c, where = 0.5, so 

&in = 1 + a + b + c. 

Hence, i 1 &in > w:and i > w:, and the edge equilibrium is stable. 
Case 3: Directional selection in one cytoplasm and underdominance in the other (VI  > up  > V S  and 

VS C u4, ve). Let i l  = 1 be unstable due to V I  C U+ This guarantees stability of i s  = 1 because v4 > V I ,  

ut > ~5 and U, > YWP. If 21 = 1 is unstable because vl < 'hug, this too guarantees stability of is = 1. 
Case 4 :  Overdominance in both cytoplasms. The viability matrix in this case can be written: 

Cytoplasm 

AA 1 - a  C - d  
Aa 1 C 

aa 1 - b  c - e  

where a ,  b, c, d ,  e > 0, a,  b < 1 and d ,  e < c. Let w:. and w& be the marginal fitnesses of gametes Am 
and am near the equilibrium on the An-an edge. Furthermore, let i. be the mean fitness at this 
equilibrium. Define wp*. and w:. as the marginal fitnesses of An and an, respectively, near the 
equilibrium on the Am-am edge. The mean fitness here is i-. 

Substituting the viability matrix (49) into formulas (42) we obtain the following: 

ae db 
e + d  e + d  

w:.= 1 -- w:"= 1 -- 

* * ae db 
w*. = c - -  w * = c - -  

a + b  a + b  

cd & = c - -  
e + d  

Let X. and Y. be the coeficients of the characteristic equation determining the stability of the 
equilibrium on the Am-am edge. They are obtained by substituting w:~, w z  and 6. into equations 
(46). Define X. and Y. as described previously, except they pertain to the An-an edge and are obtained 
by substituting w:., w k  and i" into equations (46). These are, 
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1 
- c'(a + b)'- c(bd + ae)(a + b )  + Yza'ce + '/ncb2d + abde 
2 

(a + b - ab)' 

3 
-c(a + b )  - bd - ae 
2 

a + b - a b  

3 
- ( e + d )  - ae- bd 
2 

Y, = x, = 
(51) 

1 
- ( e  + d)' - (ae + bd)(e + d )  + Yzae' + '/sbd' + abde 
2 

Y" = X" = 
c(e + d )  -ed [ c (e+d) -ed ] '  

From these it will be shown that the conditions for instability of the Am-am edge guarantee stability 
of the An-an edge and vice versa. In the symmetric case, where a = b and d = e, the coefficients 
become 

3c - 2d 2c' - 3cd + d 2  x, = - Y, = 
2 - a  ' ( 2  - a)' 

3 - 2a 2 - 3a + d 2  x. = - Y" = 
2 c - d '  (2c - d)' ' 

In this case, the following conditions can be directly shown to be true: 

(53) 
IfX,> 2 ,  then X, < 2 and Y.>X. - 1. 

IfX,< 2 and Y,<X,- 1, then X.< 2 and Y,>X, - 1. 

These conditions indicate that, whenever the Am-am edge is unstable, the An-an edge must be stable. 
Although direct algebraic proof that the coefficients (51) guarantee conditions (53) will not be given 
here, numerical and graphical methods verify that both edge equilibria cannot be simultaneously 
unstable. They can, however, be simultaneously stable. 

Case 5:  Underdominance in one cytoplasm, overdominance in the other. For case 5a, let el = 1 
be unstable because vq > V I .  Let the viability matrix be: 

Cytoplasm 

Genotype m n 

AA l + b  l + b + c  
Aa 1 l + b + c + d  
aa 1 + a  1 + b + c + d - e  

be 
d + e  

where a, b, c ,  d ,  e > 0 ,  and all viabilities are non-negative. In this case w:  = 1 + -, zu: = 1 + 

. The restrictions on the viabilities guarantee that W > WT. The 
ad d 2  

- a n d W . = l + b + c + -  

condition W > zu: is equivalent to 
d + e  (e + d )  

a < d + (b  + c)(d + e ) /d  = a*. (54) 

If a < a* then the An-an edge is stable, whereas if a is sufficiently larger than a* the An-an edge is 
not stable, but now the &, = 1 corner stability is guaranteed. 

In case 5b let the = 1 equilibrium be unstable because v I  < %up. Here the viability matrix is: 

Cytoplasm 

Genotype m n 

AA I + b  2(1 + b ) + c - d  
Aa 1 2(1 + b) + c 
aa I + a  2(1 + b ) + c - e  
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where a,  b, c, d, e > 0 and all viabilities are non-negative. w: and w ?  are as in case 5a, and 

z i = 2 ( l + b ) + c -  In this case d and e can be chosen to minimize 5, so that W,in = 

2j{[2(1 + b) + c]  = 1 + b + c because = %. Clearly, %,,,in > w:and $,,,in > w :  if a < (b + c)(d + e ) /d  
= a*.  As in case 5a, if a < a* this guarantees stability of the An-an edge, whereas if a is sufficiently 
greater than a*,  stability of the i s  = 1 corner equilibrium is guaranteed. Since zi 2 &in, this holds 
when the restrictions on d and e are relaxed. 

Case 6: Underdominance in both cytoplasms. The restrictions on the viabilities are up < V I ,  u3 and 
u5 < u4, us. If il  = 1 is unstable either because V I  < u4 or V I  < %us, then stability o f &  = 1 is guaranteed. 
i4 = 1 may be simultaneously stable, but if it is not, then i s  = 1 must be stable. This viability pattern 
guarantees stability of two corner equilibria. 

This exhausts the possible patterns of viabilities. In all cases it has been shown that the instability 
of one edge or corner equilibrium guarantees the stability of another edge or corner. This completes 
the proof that the general nuclear-cytoplasmic viability model cannot protect a complete polymor- 
phism. 

ed 
e + d ’  


